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ABSTRACT

“The problem considered is that of constructing the
decomposition of a vector in a Hilbert space into two orthogonal
components; one (the "projection") in a given cone, and the
other in the polar cone. The projection Z* can be expressed
as a Fourier-type expansion. An algorithm for constructing

*
! this expansion is given, and shown to converge to Z .

Key Words: Conic decomposition, Optimization in Hilbert space,

Projection on convex cone, Convex cone, Fourier series.
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1. Introduction

A classical result in Hilbert space theory states that each
element b, of a Hilbert space H, has a unique orthogonal

decomposition with respect to a closed subspace McH, i.e.,

* *
there exists a unique pair (z , y ) such that

*
(1.1) z EM

*
yeMl

*
Moreover (e.g. Dunford and Schwartz [3]) the component y is the

solution of the quadratic extremal problem

*
(1.2) Iy ||2 = min || b-z ||2
zeM

The so-called projection z* of b onto M, can be expanded

as a Fourier sum

(1.3) z = I

where {ek} is an orthonormal basis of M, and a, is the Fourier

coefficient @)y = (b,ek). When M is given as

(1.4) M = span {ak: k=1, 2,...}

with aks not necessarily being orthogonal, the ek's in (1.3) are

computed as

(1.5)

X

e, = A, a
ok gy 1 7H




where the coefficients li are determined by the Gram-Schmidt
procedure.
Consider now the case where M is replaced by a closed

* *
convex cone C. Here a pair (z , y ) is a conic decomposition

with respect to C, if

( * *
b=2 +Y
*
(1.6) { 2 €€
Y*eC*
* %
(z,y) =20

* *
where C is the polar cone of C: C = {yeH: (y,z)< 0, vzeC}.
Existence and uniqueness of such decomposition is shown by

*
Moreau [8]. A representation of y similar to (1.2) is

* 2 . 2
(1.7) lly 11° =min ||b—z]|] .
zeC

Problem (1.7) is the classical minimum distance problem of

optimization and approximation theory.

The fundamental role played in modern optimization theory by the
subspace and cone decompositions, and their relations to the minimum
distance problem, are well advocated in the books by Luenberger [5],
Dorny [2] and Holmes [4], among others. 1In a finite dimensional

space (1.7) is a quadratic programming problem, and the projection
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y* can be computed by appropriate quadratic programming algorithms.
The Cone Decomposition Theorem (existence and uniqueness) itself

is a convenient analytical tool to treat topics such as: Theorems
of the Alternatives, Duality in Linear Programming and more.

An interesting application of conic decomposition is discussed
by Mackie [6], following the approach of Moreau. It illustrates
nicely the use of modern concepts in optimization theory to the
solution of a problem in particle and continuum mechanics. We

outline the problem below and discuss it in more details in Section 6.

Example 1.1

A number of perfectly smooth, inelastic, identical,
spherical ball-bearings fits exactly in the interior of a curved
tube, whose radius of curvature is large compared with the
radius of a ball, and are supported so that they are at rest
in contact with one another with dravity acting vertically
downwards. At time t=0 this support is removed and the balls
begin to fall. The problem is to find the initial acceleration
of each ball, and in particular to determine which balls
initially remain in contact, and which tend to separate from
each other,

For further applications see e.g. Moreau [B), Abeasis

et al. [1]) and Miersemann (7].




When C is a closed convex set, the solution of the
minimum distance problem (1.7) is attained uniquely. Thus the
mapping Pc(b) which associates with an element beH, its closest
point in C, is a well defined function. Properties of these projection
mappings were thoroughly investigated by Zarantonello [10], from
the geometric and algebric points of view. 1In particular it is
shown, that the algebra of projections on convex cones retains, from
the algebra of linear orthogonal projections, enough similar
properties so as to develop a spectral theory, inthe spirit of the

spectral theory of linear selfadjoint operators.

The purpose of this paper is to furnish a Fourier type
. ]
representation of the projection 2 in (1.7), similar to (1.3),

(1.5), i.e.,

* a0
z = L ¢ d
k=1 k 'k

(1.8)

d, = I M, aA:

k ieIk i i
Here
(1.9) C = cone {ai: i=1, 2,...}

is the closure of the set of all non-negative finite linear

combinations of the ai's. The index set Ik and the coefficient




u; are determined by the CD Algorithm given in section 2.
The expression (1.8) is a generalization of (1.3), (1.5).

Indeed, we show in section 5 that if the system {ai} is ortho-
" @«
normal, then the non-zero terms in the expansion L
o k=1
are the same as thosein I Qp 3. ‘
k=1 .
A representation of the projection z in terms of the

cx 9y

original spanning set {ak}:

* - -]
(1.10) z2 = E a, a

is not guaranteed to converge even if C is a subspace. This
is shown by the following (another example is given by Stakgold

9: P. 290]) H

Example 1.2

In %,, the Hilbert space of sequences {ai}2=l such that
[ -3

L |a |2<m, consider the sequence of vectors a' defined component-
i=1 i

wise by
1 j =1
ai =
3 -1 j=1i+1
0 otherwise,

Let b= (0, 1, 0, 0,...), and M = span {ai). Then z*= beM, but
it is easily verified that there exists no representation of
b in the form (1.10).

Since the original spanning set {ai} is not adequate for

such a representation, another set must be used. In the subspace
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case this is the sct of orthonormal vectors (1.5), while in the
conic case it is the set of dk's in (1.8), which generally are
not even linearly independent.

In spite of the above dissimilarity between the orthogonal
and conic expansions, the latter still retains important properties
(e.g. Bessel inequality) of the classical Fourier expansion.

These properties are obtained in sections 3 and 4.

2. The Conic Decomposition Algorithm

In this section we define an algorithm (abbreviated CD
Algorithm) for the construction of the expansion (1.8). We
assume with no loss of generality that the spanning vectors are
normalized: ]Iaill =1, 1i=1, 2,...

Let N denote the positive integers, and define ¢:N+N as
the function which associates with neN the indéx of the first
non-zero digit in the binary expansion of n, e.g., ¢(2) = 2,
$(3) = 1.

one is given vectors Zp Yy in H, and scalars (x?}:=l, where

initially, (k=1)

zl =0
1 ]
X, = 0 VieN,
k+l,®
Then one computes vectors dk’ Zpe1’ Yie1’ and scalars Cpr {xi }i-l

as follows
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i
! for k odd
! -
. (2.2) dk = a¢(k+1)
(y,, 4,)
(2.3) ¢ = max k k i
~x’;(k+1
? g
i
k+1 k k+1 L
X, =X . # ¢( ) :j
(2.4) 1 i 2
k+1 k k+1
*i it % ¢ (=) |
R |
Zx+1 T %kt o 9y
(2.5)
Yee1 =P - Zpy
for k even
( z
i k
—_— Z 0
(2.6) a4 ={llg )l k7
l 0 z, =0
o (2.7) cx = ¥y, 6)
>
b KLk v £z =0
’Z i i 1 1 k =
(2.8)
k+1 ¢
X, = + — i i
i xi 1l ||zk|| vYi if Zkfo




‘ 8

. The first few steps of the CD Algorithm are:
|
z1 =0 . Y, =b v X = Q vi.

Assuming (b, al)>0, we have for k = 1:

d; = a
x2 = ¢, = (b, a,) %2 =0 viFl
1% e 2y i

1 22 = Cl al = (b' 61)5\1: Yz = b - (b' al)alr

and for k = 2

zZ

_2 =a
2 =0
2

1

C2 = (y2' dz) = (b-(b, al)alr al) = (b, al) - (b, al) =0

2.1 Remarks

+1
(a) The number of non-zero elements in the sequence {xi }i=1
k}m

exceeds that of the sequence {x1 i=1

by at most one.
- .
(b) In Lemma 3.1 we prove that z, = b x? a;, where by
i=1
remark (a) the sum on the right hand side is finite. Hence x?

can be interpreted as the "accumulated coefficient® of a; in z) .




(c) 1If the spanning set {ai} is finite, with say n elements,
the function ¢ (k) should be redefined as:
¢(k) =k 1<k<n
¢ (n+k) = ¢ (k) k=1, 2,... .
With this modification the Algorithm will maintain the properties
of the CD Algorithm, which are proved in the next sections.

3. Properties of the CD Algorithm

Some properties of the sequences generated by the CD
Algorithm are given in the next four lemmas, and will be used
eventually to prove its convergence.

Lemma 3.1 .

(3.1) x>0 W,
Nk
(3.2) & = iil Xi ai I k=1,2'o-.

For k = 2, 3,...

2 2 2
(3.3) Py LT < vy g TS = ey,
k-1
2 2 2
(3.4) Hy, I1° < Iip}|®~ ¢ ¢y .
ki - i=1 1
Proot

Inequality (3.4) is a direct consequence of (3.3) and Y1=b.

The other assertions are proved simultaneously by induction.
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Step 1: k = 1 The relations (3.1) and (3.2) hold by (2.1).

The proof of (3.3) for k = 1 is a special case of step 2.
Assuming the validity of (3.1) - (3.3) for k, we prove

their validity for k + 1, dealing separately with odd and even k.

Step 2: 0dd k To prove (3.1) note that for i # ¢(53h), xK"1=
x? > 0 by induction, while for i = ¢(551L x§+l = x? + ¢ >0 by ;
(2.3). For (3.2) we have :
Z 41 = %k * Cx 9y by (2.5) !
> x . . 'f
= I x; a; + ¢ dk by induction
i=1
= I X a, + £ k+l,a, k+l, + c,_a, k+l1 by (2.2)
i i O(T) ¢(—2—) k ¢(—2—) y *
k+1
. X
X k
k+1 2
#¢(—7—)
k+1
= I a4 x k+l,a, k+1 by (2.4)
i i 0(—7—) Q(*i—)
i#e (534

k+1l

[l
o8
]
]

proving (3.2).

The inequality.(3.3), for k replaced by k+l1 (k odd) is f

obtained as follows:
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. 2 2
HYeyy 117 = H ¥y = o 8 11 by (2.5)

2 2
= 1% 1% + ¢ -2 (y,.,d,), since ||dk||-||a¢(£§l)||’ 1.

By (2.3) I}

(Yk, dk) = ck

(3.5) or

_ k

In both cases
2
-2 e (yk'dk)i - 2ck, hence

2 2 2 2 2 2
Ika*lll < llykll + ck = de = llykll - Ck v

completing the proof in step 2.

Step 2: even k If zk =0, XE+130 ¥i by (2.8). Let

z, # 0 and define f:R*R by f(¢)=||Yk - c dkllz. This is a
convex quadratic function which attains its minimum at ck=(yk,dk).

Now (3.4) implies

' 2 2
(3.6) Hyy 115 < Hpl]=,
. 2
Since £(0) = ||yk|| , and
’ 2z 2 2
£z, D = vy - GHz D 2k 2= (yeez 2= 11612,
HZ )|
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the inequality (3.6) is equivalent to £(0) < £ (-||g (D).

This implies

£-llz, 1D < £o), Ve < = [zl .
%k
therefore ¢ > - llzkll or —_— >0
2, 11
k+1 _ k °k
and so x = % (1L + ——) > 0.
TEAD

By the above and (2.8)

z
k
z = Te]
kel = % Y %% T %R Y K T2 (]
k
. © )
= + _.._.k_.) T x’; a]_ =
“zk” i=1
[ -] c - ]
= I (1 + —-—£-—) xt a;, = X x§+l a; s
i=1 ||zk|| i=1

which proves (3.2).
Finally, since (3.5) still holds for k even, the proof of

(3.3) for k odd contains also the proof for k even. This completes
the proof of the lemma. 0O

Lemma 3.2

(3.7) iE;cﬁ < ||b||2 (Bessel inequality).

(3.8) lim Ci =0,

i+

(3.9) the sequence llykll is monotonically decreasing,
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(3.10) zkEC VkeN.

Prooﬁ

ko 2 2 | U T

By (3.4) 'il cj < |Ibl|® for all k. Hence the series iilci is
convergent, Bessel inequality (3.7) holds, and the general term
ci of the series tends to zero, i.e. (3.8) holds. The validity
of (3.9) is an immediate consequence of (3.3), while (3.10)
follows from (3.1) and (3.2). Note égain that by Remark 2.1 the
series in (3.2) is finite. 0O

The next result states roughly, that for k large enough, Yk
is "almost" in the polar cone C*,

Lemma 3.3

For €>0 and z2e¢C fixed, there exists K such that

(3.11) (Y)r 2) <€ VK>K.

Proof

We first prove (3.11l) for the case where Z=a; for some i.
By (2.2) a; appears periodically in {dk}. Denote by w the period
of a; in {dk} (w may depend on i). By (3.8) we have

€
191 = gar vioK;

for some Ki' We proceed to prove that (3.11) holds with K=K, .
Indeed, fix k>Ki, and let .




14

d =a; , 1<t<k

(such £ exists by periodicity of a; in {dk)). By (2.3) and (2.7)
we have

C.> (v, .
32 Wyrdy) V3,

and by (2.5), (2.9)

k-1

k-1 7 k-1 %-1 7 Yeer T S5 9y T ¥k-pm D€y 44

Y, =Y
j=k- jea, 3 J

k

where J, = {jeN: k-2 <j< k-1, dj ¥ 0}).

Hence

.

(Ykl ai) = (Ykl dk-l,g(yk-l_.z qjdjl dk—l) = -
jeg, I

L

d - I C. ., a
(Yk—!.' k-l) jeJl j (dJ' k-!.) <

)|

tA

c + I Jeil*lta., a
k-2 jed, 3 j’ k-2

{A

Cr_g * jEJ lGj, 1) dj,]-lldk_zll by Cauchy-Schwartz inequality
1

= Ck_E + 'Z 'cjl ’ since l,djll = 1 vjeJl'
JEJl :




e —— c——— —

€ € € €
< < + = ¢e.
bl S o S rrs g ey, €

Now let z be any element of C. Since C = span {ai), the

neighborhood of 2z

€ - . - € -
A1 AR

contains an element v which can be expressed as a finite sum

. = T . A . >0 Yied
(3.12) v in3 xJ aJ, xJ > je 2 ¢
: 2

where J, is a finite index set of cardinality, say, m.

Define,
) - €
(3.13) 6= 2m max (x.J °
jer

By the first part of the lemma, there exists Kj such that

(3.14) (yk, aj) <9 vk > K..

Let K = max Kj' By (3.12) - (3.13) we have (Yk,V)i ; . therefore
jer

wk.z)= Wk,v)+ wk,z-w

<S4yl Hz=v]]
2
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<S4 ||b]| * g5— =t , by (3.6) and VeN(Z; wrpr7) -
2z LT T I ZT1PTT

This completes the proof. 0

The next lemma shows that the subsequences (yk}, {zk},

k=2, 4, 6,..."tend to orthogonality".

Lemma 3.4

The subsequence {(yk.zk); k even)} satisfies

(3.15) lim (yk, zﬁ £ 0,
k>
Proof

By (2.9) and (3.6)
Lzl = Tlpo=y I < [iol| + [lyell < 2]|bl].
Hence for k even with zkfo, by (2.6)
| e 230 | =1 1|t @ | = Tyl - sl <

< 201bl] Igl-

The latter upper bound converges to zero, by (3.8), hence (3.15)

follows. 0
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4. Convergence of the CD Algorithm

We now combine the results of the previous section to prove

our main result:

4.1 Convergence Theorem. The sequences {Yk}, {Zk} generated
by the CD Algorithm converge to the unique components y*,z* of

the conic decomposition (1.6) respectively.

Prooﬁ

Using the properties (1.6) of the solution y *,z * one obtains
Y-¥*11% = (1%, ¥, ¥ = (v;=y*, (P-z) - (b-z*))

(Yk"Y*l z*—zk) =(yk,z*) - (yk, zk) - (y*r z*) + (y.*l zk)

<y z%) - (Y + 24) . by orthogonality of y* and z*, and the
facts y*eC*, z eC. By Lemmas 3.3 and 3.4, this implies that
for every e>0 there exists a large enough K such that ”kaY*||2<€
for all k>K, k even. This proves convergence of the subsequence
{yy}, k even.
By (3.9) the sequence lbrk||:=1 is monotone. Since it has

a convergent subsequence, the entire sequence ||yk|| must

converge to ||y*|], i.e.,
@0 uin [yl o= Lyl .
k-0

The final step of the proof is to show that the convergence

in norm (4.1) implies the convergence yk+y*. Now,

. —— - R S i
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2 2 2
Ly l1€ = b=z |17 =|1y* + 2* - z, |

1

i

||y*||2 + ||z* - zkllz + 2 (y*, z* - zk)

Hy*1 12 + |y, = v*11% - 2(y#, z,).
f - Therefore

2 2 2
Ly * 112 = g 12 = 11y S+ 200, 250

{A

”kaZ - ||Y*||2 since y*ec*, z.kgC,

The latter inequality together with (4.1) imply

Y, ¥*11% > 0, or v, + ¥+,

Since z, = b - Yk, zk + b~ y* = 2*, and the proof is

completed. 0

4.2 Remarks

(a) The choice of the initial projection Z,y = 0 in the - 3
CD Algorithm is merely for convenience. 1In fact 2] can be
chosen to be any element of C without affecting the validity
of the preceding results. 1In this sense Theorem 4.1 is a

global convergence result.

(b) In the CD Algorithm, a; appears periodically in the

sequence (4 }i_,, with period . This choice is by no means
Pk k=1

unique in order to guarantee convergence. Any choice for which
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the distance between consecutive occurences of a; in (dk} is

bounded will do.

5. The Subspace Case

In this section we discuss the case where C is a subspace
spanned by {a,, a2,...}. The CD Algorithm can be simplified
in this case and the resulting expansion has greater resemblance

to the classical Fourier expansion.

The non-orthogonal case. Let C = span {a,, a,...} where

the a;'s are arbitrary elements in £, (in particular they may be
non-orthogonal, or even linearly dependent.) Here the series
{xt} in the CD Algorithm can be dispensed with, and (2.3) is

replaced by
(2.33) Ck = (Ykl dk).

A careful examination of the results of sections 2-4 reveals
that they remain valid, with the following strengthening of the

results (3.4), (3.11) respectively:

2

2 2 kK
(5.1) I"k+l|| =||b}|® - ¢ i vk,
i=]l
(5.2) lim (Yk, 2z) =0,
&
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Moreover, a necessary and sufficient condition for equality to
hold in the Bessel inequality (3.7) can be added:

© 2 .

b Ci = ||b]] (Parseval's formula)

i=1

(5.3)
if and only if becC,

Indeed by (5.1), 2 = |Ib]|% - |ly*|1%. Hence (5.3) holds

[

TR I
-

if and only if y* 0 or equivalently beC.

The Orthogonal Case. Let C be the subspace spanned by the

orthonormal basis {ai}. We show that in this case the expansion
generated by the CD Algorithm (with the modification (2.33) is

a generalization of the classical Fourier expansion, in the
sense that the non-zero elements of the former‘coincide with

the elements of the latter. More precisely,

Proposition 5.1. Let {c;} and {di} be the sequences generated

o
by the CD Algorithm for the projection 2* = [ c di' and let
i=1
a; = (b, ai) be the Fourier coefficient in the representation

2% = g a; a;. Then
= 5k = ok -1
[ ay i=2%«<1 oy i=2
C = - -
(5.4) 5 ' : cid1
0 otherwise 0 otherwise

Proof. lLet

- - k - - .

zl = 0' zk+1 = t 01 ai '} yk = b - zkl k = 1' 2' co
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and C, = span {ai}§=l' We prove (5.4) by induction on i. For

i = 1 we have €, = a) = (bl a;) and d; = a, by (2.2). Assume

that (5.4) holds for i = 1,,..,n-1. From this andz, = 2, = 0

1 1l
it follows that

R
[
]

k -
%% T Ra

since Cy # 0 only if 2 is of the form & = 23-1, and for such j

. . .k
d, = ay and ¢, = oy by (5.4). Hence if 1=2, z, = zl+logz

and by (5.4) for all i

i,

(5.5) 1 T "1+(log,il

[y

Where [r]) ‘denotes the integer part of r. The induction hypothesis

now shows that (5.5) holds for i = 1,...n, since z_ is the
a0

(n-1) -th partial sum of the series i§1 ¢; d;. Further, since the

Fourier expansion satisfies yk+1eci . one obtains

) B} L
(5.6) yi = b - zi = b -~ zl+[1°g2i] = y1+[1092i] E C[logzi] ’

for i =1,...,n. 1If 2571 < n <2%-1, then (log,n] = k-1

and by (5.6) y_ ect

. By (2.2), (2.6), the first appearance of
a, in the sequence (4,) is f:r i= Zk-l,therEforednch_;, and
¢, = (¥,, d) =0. Ifn=2-1, then [logy(n-1)]) = k=1, y, _; =
?k by (5.6), and d_ = a, by (2.2), implying c = (y,, d,) =
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| .

{

i - k-1

5 W1~ G-1 %n-1r ) = Ogr a) = (b -1, a;, a) =
(b, ay) = a, by orthogonality of {a;}. 0

6. An_Example
We return to the problem in Example 1.1. The mathematical

model of the problem is (see [6]):

(6.1) X, =b, + A_, -} . i=1,...,n,
3

(6.3) . (x. - x:) =0 i=1,...,n-1

(6.4) Ay =2 =0, A, >0

: where A is the instantaneous reaction between the i~th and
P (i + 1)-st ball, and xi is the initial acceleration of the
i-th ball multiplied by its mass at t=0. The quantities b,
v are given in terms of the geometry of the tube.

; s Defining My = Ai-l - Ai' it is shown by Mackie that the
problem is equivalent to finding vectors x, u such that

(6.5) b=x+y, (x,u)=0, xeK, uck*

where K is the set of vectors satisfying (6.2), i.e.

.
-
Ctan L A £

(%.6) k=(x: x A >0} ,

and the matrix A is given componentwise by
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' 1 j=1i
(6.7) a;.' -1 j=i+l
0 otherwise.

It is well known that the polar of a cone given in the

form (6.6) is K* = cone {ai}2=1' a' = i-th column of A. Since

K**=K, problem (6.5) can be now reformulated in the format

1

needed for our purposes, namely: find 2z, yeRn+ such that

b = z+y, (2, y) =0, zeCn, yeca

_ n * = ' n+l,
where C = cone {a;};_; and C} = {yerR "":

As a specific example consider the decomposition of

b = (-1, .1, 0,...,0)eRn+1. Using the CD Algorithm for n=4, we

obtained a sequence converging to z* = (0, %, -%, -%, -%),

y* = (-1, %, %, %. %), which suggested that the solution for

general n is given by

n-1 1l 1

1
(6.8) z; = (0, n ’ -H' -H'-oo’ -H), Y; = (-1' %, 1 11.

H,-o-,ﬁ

*
This is indeed the solution: the relations ﬂ;e€; and (y;, zn)=0
are casily verified, while -the condition z;ecn follows by noting

n
the explicit representation z* = L[ (l-E—l)ak.
no 5 n
Turning to the case where the number of balls is infinite,

we now deal with a problem in the Hilbert space £, Using the

natural imbedding of Rn+1 in 22, i.e., xeRn+l corresponds to

yi+l - yii 0 i=l,...,n}.

AN TS A P TG £ 7 e v

o is v b eamear e e
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(xl,...,xn+l,0,0,...) clz, the cone € is now given as the
conic hull of alc!l2 given hy (6.7). A look at (6.8) suggests

that
{(6.9) z* = (O, 1, 0, 0,...) ‘e Y* = (-l: 0, 0:---)

is the solution in this case. 1Indeed, the relations y*eC*,
(z*, y*) = 0 can be verifiéd by a direct computation. Finally,
zZ*¥ = lim Z; eC since z; €C and C is closed.

n-+ow

Observe that though z*e¢C, it cannot be expanded directlv as

a non-negative linear combination (finite or infinite) of the

i
a's.
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